In modern online streaming platforms, the comments section plays a critical role in enhancing the overall user experience. Understanding user behavior within the comments section is essential for comprehensive user interest modeling. A key factor of user engagement is staytime, which refers to the amount of time that users browse and post comments. Existing watchtime prediction methods struggle to adapt to staytime prediction, overlooking interactions with individual comments and their interrelation. In this paper, we present a micro-video recommendation dataset with video comments (named as KuaiComt) which is collected from Kuaishou platform. correspondingly, we propose a practical framework for comment staytime prediction with LLM-enhanced Comment Understanding (LCU). Our framework leverages the strong text comprehension capabilities of large language models (LLMs) to understand textual information of comments, while also incorporating fine-grained comment ranking signals as auxiliary tasks. The framework is two-staged: first, the LLM is fine-tuned using domain-specific tasks to bridge the video and the comments; second, we incorporate the LLM outputs into the prediction model and design two comment ranking auxiliary tasks to better understand user preference. Extensive offline experiments demonstrate the effectiveness of our framework, showing significant improvements on the task of comment staytime prediction. Additionally, online A/B testing further validates the practical benefits on industrial scenario. Our dataset KuaiComt (this https URL) and code for LCU (this https URL) are fully released.
View on arXiv@article{zhang2025_2504.01602, title={ Comment Staytime Prediction with LLM-enhanced Comment Understanding }, author={ Changshuo Zhang and Zihan Lin and Shukai Liu and Yongqi Liu and Han Li }, journal={arXiv preprint arXiv:2504.01602}, year={ 2025 } }