PaperBench: Evaluating AI's Ability to Replicate AI Research

We introduce PaperBench, a benchmark evaluating the ability of AI agents to replicate state-of-the-art AI research. Agents must replicate 20 ICML 2024 Spotlight and Oral papers from scratch, including understanding paper contributions, developing a codebase, and successfully executing experiments. For objective evaluation, we develop rubrics that hierarchically decompose each replication task into smaller sub-tasks with clear grading criteria. In total, PaperBench contains 8,316 individually gradable tasks. Rubrics are co-developed with the author(s) of each ICML paper for accuracy and realism. To enable scalable evaluation, we also develop an LLM-based judge to automatically grade replication attempts against rubrics, and assess our judge's performance by creating a separate benchmark for judges. We evaluate several frontier models on PaperBench, finding that the best-performing tested agent, Claude 3.5 Sonnet (New) with open-source scaffolding, achieves an average replication score of 21.0%. Finally, we recruit top ML PhDs to attempt a subset of PaperBench, finding that models do not yet outperform the human baseline. We open-source our code (this https URL) to facilitate future research in understanding the AI engineering capabilities of AI agents.
View on arXiv@article{starace2025_2504.01848, title={ PaperBench: Evaluating AI's Ability to Replicate AI Research }, author={ Giulio Starace and Oliver Jaffe and Dane Sherburn and James Aung and Jun Shern Chan and Leon Maksin and Rachel Dias and Evan Mays and Benjamin Kinsella and Wyatt Thompson and Johannes Heidecke and Amelia Glaese and Tejal Patwardhan }, journal={arXiv preprint arXiv:2504.01848}, year={ 2025 } }