Stochastic Gradient Descent (SGD) and its variants, such as ADAM, are foundational to deep learning optimization, adjusting model parameters using fixed or adaptive learning rates based on loss function gradients. However, these methods often face challenges in balancing adaptability and efficiency in non-convex, high-dimensional settings. This paper introduces AYLA, a novel optimization technique that enhances training dynamics through loss function transformations. By applying a tunable power-law transformation, AYLA preserves critical points while scaling loss values to amplify gradient sensitivity, accelerating convergence. We further propose a dynamic (effective) learning rate that adapts to the transformed loss, improving optimization efficiency. Empirical tests on finding minimum of a synthetic non-convex polynomial, a non-convex curve-fitting dataset, and digit classification (MNIST) demonstrate that AYLA surpasses SGD and ADAM in convergence speed and stability. This approach redefines the loss landscape for better optimization outcomes, offering a promising advancement for deep neural networks and can be applied to any optimization method and potentially improve the performance of it.
View on arXiv@article{keslaki2025_2504.01875, title={ Architect Your Landscape Approach (AYLA) for Optimizations in Deep Learning }, author={ Ben Keslaki }, journal={arXiv preprint arXiv:2504.01875}, year={ 2025 } }