2
0

STAR-1: Safer Alignment of Reasoning LLMs with 1K Data

Abstract

This paper introduces STAR-1, a high-quality, just-1k-scale safety dataset specifically designed for large reasoning models (LRMs) like DeepSeek-R1. Built on three core principles -- diversity, deliberative reasoning, and rigorous filtering -- STAR-1 aims to address the critical needs for safety alignment in LRMs. Specifically, we begin by integrating existing open-source safety datasets from diverse sources. Then, we curate safety policies to generate policy-grounded deliberative reasoning samples. Lastly, we apply a GPT-4o-based safety scoring system to select training examples aligned with best practices. Experimental results show that fine-tuning LRMs with STAR-1 leads to an average 40% improvement in safety performance across four benchmarks, while only incurring a marginal decrease (e.g., an average of 1.1%) in reasoning ability measured across five reasoning tasks. Extensive ablation studies further validate the importance of our design principles in constructing STAR-1 and analyze its efficacy across both LRMs and traditional LLMs. Our project page isthis https URL.

View on arXiv
@article{wang2025_2504.01903,
  title={ STAR-1: Safer Alignment of Reasoning LLMs with 1K Data },
  author={ Zijun Wang and Haoqin Tu and Yuhan Wang and Juncheng Wu and Jieru Mei and Brian R. Bartoldson and Bhavya Kailkhura and Cihang Xie },
  journal={arXiv preprint arXiv:2504.01903},
  year={ 2025 }
}
Comments on this paper