Robust AI-Synthesized Image Detection via Multi-feature Frequency-aware Learning

The rapid progression of generative AI (GenAI) technologies has heightened concerns regarding the misuse of AI-generated imagery. To address this issue, robust detection methods have emerged as particularly compelling, especially in challenging conditions where the targeted GenAI models are out-of-distribution or the generated images have been subjected to perturbations during transmission. This paper introduces a multi-feature fusion framework designed to enhance spatial forensic feature representations with incorporating three complementary components, namely noise correlation analysis, image gradient information, and pretrained vision encoder knowledge, using a cross-source attention mechanism. Furthermore, to identify spectral abnormality in synthetic images, we propose a frequency-aware architecture that employs the Frequency-Adaptive Dilated Convolution, enabling the joint modeling of spatial and spectral features while maintaining low computational complexity. Our framework exhibits exceptional generalization performance across fourteen diverse GenAI systems, including text-to-image diffusion models, autoregressive approaches, and post-processed deepfake methods. Notably, it achieves significantly higher mean accuracy in cross-model detection tasks when compared to existing state-of-the-art techniques. Additionally, the proposed method demonstrates resilience against various types of real-world image noise perturbations such as compression and blurring. Extensive ablation studies further corroborate the synergistic benefits of fusing multi-model forensic features with frequency-aware learning, underscoring the efficacy of our approach.
View on arXiv@article{cai2025_2504.02879, title={ Robust AI-Synthesized Image Detection via Multi-feature Frequency-aware Learning }, author={ Hongfei Cai and Chi Liu and Sheng Shen and Youyang Qu and Peng Gui }, journal={arXiv preprint arXiv:2504.02879}, year={ 2025 } }