Deep neuroevolution is a highly scalable alternative to reinforcement learning due to its unique ability to encode network updates in a small number of bytes. Recent insights from traditional deep learning indicate high-dimensional models possess intrinsic, low-rank structure. In this work, we introduce low-rank, factorized neuroevolution: an indirect encoding through which we can search a small space of low-rank factors that enforce underlying structure across a network's weights. We compare our approach with non-factorized networks of similar and smaller size to understand how much performance can be attributed to the smaller search space. We evaluate our method on a language modeling task using transformers, as well as continuous and discrete vision-based reinforcement learning tasks. Our study shows that low-rank, factorized neuroevolution outperforms or is competitive with non-factorized neuroevolution, performing notably well on language modeling. Our results also suggest deleterious factorized mutations have a stronger negative impact on performance than deleterious non-factorized mutations, which significantly reduces the runtime on environments with early termination for bad performers. More broadly, these results show how we can use insights from backpropgation-based methods to enhance neuroevolution
View on arXiv@article{garbus2025_2504.03037, title={ Low Rank Factorizations are Indirect Encodings for Deep Neuroevolution }, author={ Jack Garbus and Jordan Pollack }, journal={arXiv preprint arXiv:2504.03037}, year={ 2025 } }