ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2504.03800
21
1

Decision SpikeFormer: Spike-Driven Transformer for Decision Making

4 April 2025
Wei Huang
Qinying Gu
Nanyang Ye
    OffRL
ArXivPDFHTML
Abstract

Offline reinforcement learning (RL) enables policy training solely on pre-collected data, avoiding direct environment interaction - a crucial benefit for energy-constrained embodied AI applications. Although Artificial Neural Networks (ANN)-based methods perform well in offline RL, their high computational and energy demands motivate exploration of more efficient alternatives. Spiking Neural Networks (SNNs) show promise for such tasks, given their low power consumption. In this work, we introduce DSFormer, the first spike-driven transformer model designed to tackle offline RL via sequence modeling. Unlike existing SNN transformers focused on spatial dimensions for vision tasks, we develop Temporal Spiking Self-Attention (TSSA) and Positional Spiking Self-Attention (PSSA) in DSFormer to capture the temporal and positional dependencies essential for sequence modeling in RL. Additionally, we propose Progressive Threshold-dependent Batch Normalization (PTBN), which combines the benefits of LayerNorm and BatchNorm to preserve temporal dependencies while maintaining the spiking nature of SNNs. Comprehensive results in the D4RL benchmark show DSFormer's superiority over both SNN and ANN counterparts, achieving 78.4% energy savings, highlighting DSFormer's advantages not only in energy efficiency but also in competitive performance. Code and models are public atthis https URL.

View on arXiv
@article{huang2025_2504.03800,
  title={ Decision SpikeFormer: Spike-Driven Transformer for Decision Making },
  author={ Wei Huang and Qinying Gu and Nanyang Ye },
  journal={arXiv preprint arXiv:2504.03800},
  year={ 2025 }
}
Comments on this paper