ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2504.04789
21
0

Multimodal Agricultural Agent Architecture (MA3): A New Paradigm for Intelligent Agricultural Decision-Making

7 April 2025
Zhuoning Xu
Jian Xu
M. Zhang
P. Wang
Chao Deng
Cheng-Lin Liu
ArXivPDFHTML
Abstract

As a strategic pillar industry for human survival and development, modern agriculture faces dual challenges: optimizing production efficiency and achieving sustainable development. Against the backdrop of intensified climate change leading to frequent extreme weather events, the uncertainty risks in agricultural production systems are increasing exponentially. To address these challenges, this study proposes an innovative \textbf{M}ultimodal \textbf{A}gricultural \textbf{A}gent \textbf{A}rchitecture (\textbf{MA3}), which leverages cross-modal information fusion and task collaboration mechanisms to achieve intelligent agricultural decision-making. This study constructs a multimodal agricultural agent dataset encompassing five major tasks: classification, detection, Visual Question Answering (VQA), tool selection, and agent evaluation. We propose a unified backbone for sugarcane disease classification and detection tools, as well as a sugarcane disease expert model. By integrating an innovative tool selection module, we develop a multimodal agricultural agent capable of effectively performing tasks in classification, detection, and VQA. Furthermore, we introduce a multi-dimensional quantitative evaluation framework and conduct a comprehensive assessment of the entire architecture over our evaluation dataset, thereby verifying the practicality and robustness of MA3 in agricultural scenarios. This study provides new insights and methodologies for the development of agricultural agents, holding significant theoretical and practical implications. Our source code and dataset will be made publicly available upon acceptance.

View on arXiv
@article{xu2025_2504.04789,
  title={ Multimodal Agricultural Agent Architecture (MA3): A New Paradigm for Intelligent Agricultural Decision-Making },
  author={ Zhuoning Xu and Jian Xu and Mingqing Zhang and Peijie Wang and Chao Deng and Cheng-Lin Liu },
  journal={arXiv preprint arXiv:2504.04789},
  year={ 2025 }
}
Comments on this paper