140
v1v2 (latest)

Predictive Modeling: BIM Command Recommendation Based on Large-scale Usage Logs

Advanced Engineering Informatics (AEI), 2025
Main:40 Pages
20 Figures
Bibliography:3 Pages
9 Tables
Abstract

The adoption of Building Information Modeling (BIM) and model-based design within the Architecture, Engineering, and Construction (AEC) industry has been hindered by the perception that using BIM authoring tools demands more effort than conventional 2D drafting. To enhance design efficiency, this paper proposes a BIM command recommendation framework that predicts the optimal next actions in real-time based on users' historical interactions. We propose a comprehensive filtering and enhancement method for large-scale raw BIM log data and introduce a novel command recommendation model. Our model builds upon the state-of-the-art Transformer backbones originally developed for large language models (LLMs), incorporating a custom feature fusion module, dedicated loss function, and targeted learning strategy. In a case study, the proposed method is applied to over 32 billion rows of real-world log data collected globally from the BIM authoring software Vectorworks. Experimental results demonstrate that our method can learn universal and generalizable modeling patterns from anonymous user interaction sequences across different countries, disciplines, and projects. When generating recommendations for the next command, our approach achieves a Recall@10 of approximately 84%. The code is available at:this https URL

View on arXiv
Comments on this paper