26
0

Nes2Net: A Lightweight Nested Architecture for Foundation Model Driven Speech Anti-spoofing

Abstract

Speech foundation models have significantly advanced various speech-related tasks by providing exceptional representation capabilities. However, their high-dimensional output features often create a mismatch with downstream task models, which typically require lower-dimensional inputs. A common solution is to apply a dimensionality reduction (DR) layer, but this approach increases parameter overhead, computational costs, and risks losing valuable information. To address these issues, we propose Nested Res2Net (Nes2Net), a lightweight back-end architecture designed to directly process high-dimensional features without DR layers. The nested structure enhances multi-scale feature extraction, improves feature interaction, and preserves high-dimensional information. We first validate Nes2Net on CtrSVDD, a singing voice deepfake detection dataset, and report a 22% performance improvement and an 87% back-end computational cost reduction over the state-of-the-art baseline. Additionally, extensive testing across four diverse datasets: ASVspoof 2021, ASVspoof 5, PartialSpoof, and In-the-Wild, covering fully spoofed speech, adversarial attacks, partial spoofing, and real-world scenarios, consistently highlights Nes2Net's superior robustness and generalization capabilities. The code package and pre-trained models are available atthis https URL.

View on arXiv
@article{liu2025_2504.05657,
  title={ Nes2Net: A Lightweight Nested Architecture for Foundation Model Driven Speech Anti-spoofing },
  author={ Tianchi Liu and Duc-Tuan Truong and Rohan Kumar Das and Kong Aik Lee and Haizhou Li },
  journal={arXiv preprint arXiv:2504.05657},
  year={ 2025 }
}
Comments on this paper