31
0

Retrieval Augmented Generation with Collaborative Filtering for Personalized Text Generation

Abstract

Recently, the personalization of Large Language Models (LLMs) to generate content that aligns with individual user preferences has garnered widespread attention. Personalized Retrieval-Augmented Generation (RAG), which retrieves relevant documents from the user's history to reflect their preferences and enhance LLM generation, is one commonly used approach for personalization. However, existing personalized RAG methods do not consider that the histories of similar users can also assist in personalized generation for the current user, meaning that collaborative information between users can also benefit personalized generation. Inspired by the application of collaborative filtering in recommender systems, we propose a method called CFRAG, which adapts Collaborative Filtering to RAG for personalized text generation. However, this presents two challenges: (1)~how to incorporate collaborative information without explicit user similarity labels? (2)~how to retrieve documents that support personalized LLM generation? For Challenge 1, we use contrastive learning to train user embeddings to retrieve similar users and introduce collaborative information. For Challenge 2, we design a personalized retriever and reranker to retrieve the top-kk documents from these users' histories. We take into account the user's preference during retrieval and reranking. Then we leverage feedback from the LLM to fine-tune the personalized retriever and reranker, enabling them to retrieve documents that meet the personalized generation needs of the LLM. Experimental results on the Language Model Personalization (LaMP) benchmark validate the effectiveness of CFRAG. Further analysis confirms the importance of incorporating collaborative information.

View on arXiv
@article{shi2025_2504.05731,
  title={ Retrieval Augmented Generation with Collaborative Filtering for Personalized Text Generation },
  author={ Teng Shi and Jun Xu and Xiao Zhang and Xiaoxue Zang and Kai Zheng and Yang Song and Han Li },
  journal={arXiv preprint arXiv:2504.05731},
  year={ 2025 }
}
Comments on this paper