ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2504.06399
118
3

Low Rank Learning for Offline Query Optimization

8 April 2025
Zixuan Yi
Yao Tian
Z. Ives
Ryan Marcus
    OffRL
ArXiv (abs)PDFHTML
Main:12 Pages
20 Figures
Bibliography:3 Pages
1 Tables
Abstract

Recent deployments of learned query optimizers use expensive neural networks and ad-hoc search policies. To address these issues, we introduce \textsc{LimeQO}, a framework for offline query optimization leveraging low-rank learning to efficiently explore alternative query plans with minimal resource usage. By modeling the workload as a partially observed, low-rank matrix, we predict unobserved query plan latencies using purely linear methods, significantly reducing computational overhead compared to neural networks. We formalize offline exploration as an active learning problem, and present simple heuristics that reduces a 3-hour workload to 1.5 hours after just 1.5 hours of exploration. Additionally, we propose a transductive Tree Convolutional Neural Network (TCNN) that, despite higher computational costs, achieves the same workload reduction with only 0.5 hours of exploration. Unlike previous approaches that place expensive neural networks directly in the query processing ``hot'' path, our approach offers a low-overhead solution and a no-regressions guarantee, all without making assumptions about the underlying DBMS. The code is available in \href{this https URL}{this https URL}.

View on arXiv
Comments on this paper