ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2504.07360
28
0

Enhancing Time Series Forecasting via Multi-Level Text Alignment with LLMs

10 April 2025
Taibiao Zhao
Xiaobing Chen
Mingxuan Sun
    AI4TS
ArXivPDFHTML
Abstract

The adaptation of large language models (LLMs) to time series forecasting poses unique challenges, as time series data is continuous in nature, while LLMs operate on discrete tokens. Despite the success of LLMs in natural language processing (NLP) and other structured domains, aligning time series data with language-based representations while maintaining both predictive accuracy and interpretability remains a significant hurdle. Existing methods have attempted to reprogram time series data into text-based forms, but these often fall short in delivering meaningful, interpretable results. In this paper, we propose a multi-level text alignment framework for time series forecasting using LLMs that not only improves prediction accuracy but also enhances the interpretability of time series representations. Our method decomposes time series into trend, seasonal, and residual components, which are then reprogrammed into component-specific text representations. We introduce a multi-level alignment mechanism, where component-specific embeddings are aligned with pre-trained word tokens, enabling more interpretable forecasts. Experiments on multiple datasets demonstrate that our method outperforms state-of-the-art models in accuracy while providing good interpretability.

View on arXiv
@article{zhao2025_2504.07360,
  title={ Enhancing Time Series Forecasting via Multi-Level Text Alignment with LLMs },
  author={ Taibiao Zhao and Xiaobing Chen and Mingxuan Sun },
  journal={arXiv preprint arXiv:2504.07360},
  year={ 2025 }
}
Comments on this paper