19
0

MMLA: Multi-Environment, Multi-Species, Low-Altitude Aerial Footage Dataset

Abstract

Real-time wildlife detection in drone imagery is critical for numerous applications, including animal ecology, conservation, and biodiversity monitoring. Low-altitude drone missions are effective for collecting fine-grained animal movement and behavior data, particularly if missions are automated for increased speed and consistency. However, little work exists on evaluating computer vision models on low-altitude aerial imagery and generalizability across different species and settings. To fill this gap, we present a novel multi-environment, multi-species, low-altitude aerial footage (MMLA) dataset. MMLA consists of drone footage collected across three diverse environments: Ol Pejeta Conservancy and Mpala Research Centre in Kenya, and The Wilds Conservation Center in Ohio, which includes five species: Plains zebras, Grevy's zebras, giraffes, onagers, and African Painted Dogs. We comprehensively evaluate three YOLO models (YOLOv5m, YOLOv8m, and YOLOv11m) for detecting animals. Results demonstrate significant performance disparities across locations and species-specific detection variations. Our work highlights the importance of evaluating detection algorithms across different environments for robust wildlife monitoring applications using drones.

View on arXiv
@article{kline2025_2504.07744,
  title={ MMLA: Multi-Environment, Multi-Species, Low-Altitude Aerial Footage Dataset },
  author={ Jenna Kline and Samuel Stevens and Guy Maalouf and Camille Rondeau Saint-Jean and Dat Nguyen Ngoc and Majid Mirmehdi and David Guerin and Tilo Burghardt and Elzbieta Pastucha and Blair Costelloe and Matthew Watson and Thomas Richardson and Ulrik Pagh Schultz Lundquist },
  journal={arXiv preprint arXiv:2504.07744},
  year={ 2025 }
}
Comments on this paper