ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2504.09409
25
0

Bregman Linearized Augmented Lagrangian Method for Nonconvex Constrained Stochastic Zeroth-order Optimization

13 April 2025
Qiankun Shi
Xiao Wang
Hao Wang
ArXivPDFHTML
Abstract

In this paper, we study nonconvex constrained stochastic zeroth-order optimization problems, for which we have access to exact information of constraints and noisy function values of the objective. We propose a Bregman linearized augmented Lagrangian method that utilizes stochastic zeroth-order gradient estimators combined with a variance reduction technique. We analyze its oracle complexity, in terms of the total number of stochastic function value evaluations required to achieve an \(\epsilon\)-KKT point in \(\ell_p\)-norm metrics with \(p \ge 2\), where \(p\) is a parameter associated with the selected Bregman distance. In particular, starting from a near-feasible initial point and using Rademacher smoothing, the oracle complexity is in order \(O(p d^{2/p} \epsilon^{-3})\) for \(p \in [2, 2 \ln d]\), and \(O(\ln d \cdot \epsilon^{-3})\) for \(p > 2 \ln d\), where \(d\) denotes the problem dimension. Those results show that the complexity of the proposed method can achieve a dimensional dependency lower than \(O(d)\) without requiring additional assumptions, provided that a Bregman distance is chosen properly. This offers a significant improvement in the high-dimensional setting over existing work, and matches the lowest complexity order with respect to the tolerance \(\epsilon\) reported in the literature. Numerical experiments on constrained Lasso and black-box adversarial attack problems highlight the promising performances of the proposed method.

View on arXiv
@article{shi2025_2504.09409,
  title={ Bregman Linearized Augmented Lagrangian Method for Nonconvex Constrained Stochastic Zeroth-order Optimization },
  author={ Qiankun Shi and Xiao Wang and Hao Wang },
  journal={arXiv preprint arXiv:2504.09409},
  year={ 2025 }
}
Comments on this paper