ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2504.11889
320
0
v1v2 (latest)

Rethinking LLM-Based Recommendations: A Personalized Query-Driven Parallel Integration

16 April 2025
Donghee Han
Hwanjun Song
Mun Yi
    LRM
ArXiv (abs)PDFHTMLGithub
Main:8 Pages
15 Figures
Bibliography:3 Pages
9 Tables
Appendix:14 Pages
Abstract

Recent studies have explored integrating large language models (LLMs) into recommendation systems but face several challenges, including training-induced bias and bottlenecks from serialized architecture. To effectively address these issues, we propose a Query-toRecommendation, a parallel recommendation framework that decouples LLMs from candidate pre-selection and instead enables direct retrieval over the entire item pool. Our framework connects LLMs and recommendation models in a parallel manner, allowing each component to independently utilize its strengths without interfering with the other. In this framework, LLMs are utilized to generate feature-enriched item descriptions and personalized user queries, allowing for capturing diverse preferences and enabling rich semantic matching in a zero-shot manner. To effectively combine the complementary strengths of LLM and collaborative signals, we introduce an adaptive reranking strategy. Extensive experiments demonstrate an improvement in performance up to 57%, while also improving the novelty and diversity of recommendations.

View on arXiv
Comments on this paper