Wavelet-based Variational Autoencoders for High-Resolution Image Generation

Variational Autoencoders (VAEs) are powerful generative models capable of learning compact latent representations. However, conventional VAEs often generate relatively blurry images due to their assumption of an isotropic Gaussian latent space and constraints in capturing high-frequency details. In this paper, we explore a novel wavelet-based approach (Wavelet-VAE) in which the latent space is constructed using multi-scale Haar wavelet coefficients. We propose a comprehensive method to encode the image features into multi-scale detail and approximation coefficients and introduce a learnable noise parameter to maintain stochasticity. We thoroughly discuss how to reformulate the reparameterization trick, address the KL divergence term, and integrate wavelet sparsity principles into the training objective. Our experimental evaluation on CIFAR-10 and other high-resolution datasets demonstrates that the Wavelet-VAE improves visual fidelity and recovers higher-resolution details compared to conventional VAEs. We conclude with a discussion of advantages, potential limitations, and future research directions for wavelet-based generative modeling.
View on arXiv@article{kiruluta2025_2504.13214, title={ Wavelet-based Variational Autoencoders for High-Resolution Image Generation }, author={ Andrew Kiruluta }, journal={arXiv preprint arXiv:2504.13214}, year={ 2025 } }