ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2504.15471
28
40

Bigram Subnetworks: Mapping to Next Tokens in Transformer Language Models

21 April 2025
Tyler A. Chang
Benjamin Bergen
ArXivPDFHTML
Abstract

In Transformer language models, activation vectors transform from current token embeddings to next token predictions as they pass through the model. To isolate a minimal form of this transformation, we identify language model subnetworks that make bigram predictions, naive next token predictions based only on the current token. We find that bigram subnetworks can be found in fully trained language models up to 1B parameters, and these subnetworks are critical for model performance even when they consist of less than 0.2% of model parameters. Bigram subnetworks are concentrated in the first Transformer MLP layer, and they overlap significantly with subnetworks trained to optimally prune a given model. Mechanistically, the bigram subnetworks often recreate a pattern from the full models where the first layer induces a sharp change that aligns activations with next token predictions rather than current token representations. Our results demonstrate that bigram subnetworks comprise a minimal subset of parameters that are both necessary and sufficient for basic next token predictions in language models, and they help drive the transformation from current to next token activations in the residual stream. These subnetworks can lay a foundation for studying more complex language model circuits by building up from a minimal circuit.

View on arXiv
@article{chang2025_2504.15471,
  title={ Bigram Subnetworks: Mapping to Next Tokens in Transformer Language Models },
  author={ Tyler A. Chang and Benjamin K. Bergen },
  journal={arXiv preprint arXiv:2504.15471},
  year={ 2025 }
}
Comments on this paper