ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2504.15613
12
0

Learning Dynamic Graphs via Tensorized and Lightweight Graph Convolutional Networks

22 April 2025
Minglian Han
ArXivPDFHTML
Abstract

A dynamic graph (DG) is frequently encountered in numerous real-world scenarios. Consequently, A dynamic graph convolutional network (DGCN) has been successfully applied to perform precise representation learning on a DG. However, conventional DGCNs typically consist of a static GCN coupled with a sequence neural network (SNN) to model spatial and temporal patterns separately. This decoupled modeling mechanism inherently disrupts the intricate spatio-temporal dependencies. To address the issue, this study proposes a novel Tensorized Lightweight Graph Convolutional Network (TLGCN) for accurate dynamic graph learning. It mainly contains the following two key concepts: a) designing a novel spatio-temporal information propagation method for joint propagation of spatio-temporal information based on the tensor M-product framework; b) proposing a tensorized lightweight graph convolutional network based on the above method, which significantly reduces the memory occupation of the model by omitting complex feature transformation and nonlinear activation. Numerical experiments on four real-world datasets demonstrate that the proposed TLGCN outperforms the state-of-the-art models in the weight estimation task on DGs.

View on arXiv
@article{han2025_2504.15613,
  title={ Learning Dynamic Graphs via Tensorized and Lightweight Graph Convolutional Networks },
  author={ Minglian Han },
  journal={arXiv preprint arXiv:2504.15613},
  year={ 2025 }
}
Comments on this paper