From Past to Present: A Survey of Malicious URL Detection Techniques, Datasets and Code Repositories

Malicious URLs persistently threaten the cybersecurity ecosystem, by either deceiving users into divulging private data or distributing harmful payloads to infiltrate host systems. Gaining timely insights into the current state of this ongoing battle holds significant importance. However, existing reviews exhibit 4 critical gaps: 1) Their reliance on algorithm-centric taxonomies obscures understanding of how detection approaches exploit specific modal information channels; 2) They fail to incorporate pivotal LLM/Transformer-based defenses; 3) No open-source implementations are collected to facilitate benchmarking; 4) Insufficient datasetthis http URLpaper presents a comprehensive review of malicious URL detection technologies, systematically analyzing methods from traditional blacklisting to advanced deep learning approaches (e.g. Transformer, GNNs, and LLMs). Unlike prior surveys, we propose a novel modality-based taxonomy that categorizes existing works according to their primary data modalities (URL, HTML, Visual, etc.). This hierarchical classification enables both rigorous technical analysis and clear understanding of multimodal information utilization. Furthermore, to establish a profile of accessible datasets and address the lack of standardized benchmarking (where current studies often lack proper baseline comparisons), we curate and analyze: 1) publicly available datasets (2016-2024), and 2) open-source implementations from published works(2013-2025). Then, we outline essential design principles and architectural frameworks for product-level implementations. The review concludes by examining emerging challenges and proposing actionable directions for future research. We maintain a GitHub repository for ongoing curating datasets and open-source implementations:this https URL.
View on arXiv@article{tian2025_2504.16449, title={ From Past to Present: A Survey of Malicious URL Detection Techniques, Datasets and Code Repositories }, author={ Ye Tian and Yanqiu Yu and Jianguo Sun and Yanbin Wang }, journal={arXiv preprint arXiv:2504.16449}, year={ 2025 } }