TIFIN India at SemEval-2025: Harnessing Translation to Overcome Multilingual IR Challenges in Fact-Checked Claim Retrieval

Abstract
We address the challenge of retrieving previously fact-checked claims in monolingual and crosslingual settings - a critical task given the global prevalence of disinformation. Our approach follows a two-stage strategy: a reliable baseline retrieval system using a fine-tuned embedding model and an LLM-based reranker. Our key contribution is demonstrating how LLM-based translation can overcome the hurdles of multilingual information retrieval. Additionally, we focus on ensuring that the bulk of the pipeline can be replicated on a consumer GPU. Our final integrated system achieved a success@10 score of 0.938 and 0.81025 on the monolingual and crosslingual test sets, respectively.
View on arXiv@article{devadiga2025_2504.16627, title={ TIFIN India at SemEval-2025: Harnessing Translation to Overcome Multilingual IR Challenges in Fact-Checked Claim Retrieval }, author={ Prasanna Devadiga and Arya Suneesh and Pawan Kumar Rajpoot and Bharatdeep Hazarika and Aditya U Baliga }, journal={arXiv preprint arXiv:2504.16627}, year={ 2025 } }
Comments on this paper