Retrieval Augmented Generation (RAG) has become the standard non-parametric approach for equipping Large Language Models (LLMs) with up-to-date knowledge and mitigating catastrophic forgetting common in continual learning. However, standard RAG, relying on independent passage retrieval, fails to capture the interconnected nature of human memory crucial for complex reasoning (associativity) and contextual understanding (sense-making). While structured RAG methods like HippoRAG utilize knowledge graphs (KGs) built from triples, the inherent context loss limits fidelity. We introduce PropRAG, a framework leveraging contextually rich propositions and a novel beam search algorithm over proposition paths to explicitly discover multi-step reasoning chains. Crucially, PropRAG's online retrieval process operates entirely without invoking generative LLMs, relying instead on efficient graph traversal and pre-computed embeddings. This avoids online LLM inference costs and potential inconsistencies during evidence gathering. LLMs are used effectively offline for high-quality proposition extraction and post-retrieval for answer generation. PropRAG achieves state-of-the-art zero-shot Recall@5 results on PopQA (55.3%), 2Wiki (93.7%), HotpotQA (97.0%), and MuSiQue (77.3%), alongside top F1 scores (e.g., 52.4% on MuSiQue). By improving evidence retrieval through richer representation and explicit, LLM-free online path finding, PropRAG advances non-parametric continual learning.
View on arXiv@article{wang2025_2504.18070, title={ PropRAG: Guiding Retrieval with Beam Search over Proposition Paths }, author={ Jingjin Wang }, journal={arXiv preprint arXiv:2504.18070}, year={ 2025 } }