Towards Adaptive Software Agents for Debugging

Using multiple agents was found to improve the debugging capabilities of Large Language Models. However, increasing the number of LLM-agents has several drawbacks such as increasing the running costs and rising the risk for the agents to lose focus. In this work, we propose an adaptive agentic design, where the number of agents and their roles are determined dynamically based on the characteristics of the task to be achieved. In this design, the agents roles are not predefined, but are generated after analyzing the problem to be solved. Our initial evaluation shows that, with the adaptive design, the number of agents that are generated depends on the complexity of the buggy code. In fact, for simple code with mere syntax issues, the problem was usually fixed using one agent only. However, for more complex problems, we noticed the creation of a higher number of agents. Regarding the effectiveness of the fix, we noticed an average improvement of 11% compared to the one-shot prompting. Given these promising results, we outline future research directions to improve our design for adaptive software agents that can autonomously plan and conduct their software goals.
View on arXiv@article{majdoub2025_2504.18316, title={ Towards Adaptive Software Agents for Debugging }, author={ Yacine Majdoub and Eya Ben Charrada and Haifa Touati }, journal={arXiv preprint arXiv:2504.18316}, year={ 2025 } }