Web navigation AI agents use language-and-vision foundation models to enhance productivity but these models are known to be susceptible to indirect prompt injections that get them to follow instructions different from the legitimate user's. Existing explorations of this threat applied to web agents often focus on a single isolated adversarial goal, test with injected instructions that are either too easy or not truly malicious, and often give the adversary unreasonable access. In order to better focus adversarial research, we construct a new benchmark called WASP (Web Agent Security against Prompt injection attacks) that introduces realistic web agent hijacking objectives and an isolated environment to test them in that does not affect real users or the live web. As part of WASP, we also develop baseline attacks against popular web agentic systems (VisualWebArena, Claude Computer Use, etc.) instantiated with various state-of-the-art models. Our evaluation shows that even AI agents backed by models with advanced reasoning capabilities and by models with instruction hierarchy mitigations are susceptible to low-effort human-written prompt injections. However, the realistic objectives in WASP also allow us to observe that agents are currently not capable enough to complete the goals of attackers end-to-end. Agents begin executing the adversarial instruction between 16 and 86% of the time but only achieve the goal between 0 and 17% of the time. Based on these findings, we argue that adversarial researchers should demonstrate stronger attacks that more consistently maintain control over the agent given realistic constraints on the adversary's power.
View on arXiv@article{evtimov2025_2504.18575, title={ WASP: Benchmarking Web Agent Security Against Prompt Injection Attacks }, author={ Ivan Evtimov and Arman Zharmagambetov and Aaron Grattafiori and Chuan Guo and Kamalika Chaudhuri }, journal={arXiv preprint arXiv:2504.18575}, year={ 2025 } }