Partial Answer of How Transformers Learn Automata

Abstract
We introduce a novel framework for simulating finite automata using representation-theoretic semidirect products and Fourier modules, achieving more efficient Transformer-based implementations.
View on arXiv@article{zhang2025_2504.20395, title={ Partial Answer of How Transformers Learn Automata }, author={ Tiantian Zhang }, journal={arXiv preprint arXiv:2504.20395}, year={ 2025 } }
Comments on this paper