ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2504.20906
17
0

GiBy: A Giant-Step Baby-Step Classifier For Anomaly Detection In Industrial Control Systems

29 April 2025
Sarad Venugopalan
Sridhar Adepu
ArXivPDFHTML
Abstract

The continuous monitoring of the interactions between cyber-physical components of any industrial control system (ICS) is required to secure automation of the system controls, and to guarantee plant processes are fail-safe and remain in an acceptably safe state. Safety is achieved by managing actuation (where electric signals are used to trigger physical movement), dependent on corresponding sensor readings; used as ground truth in decision making. Timely detection of anomalies (attacks, faults and unascertained states) in ICSs is crucial for the safe running of a plant, the safety of its personnel, and for the safe provision of any services provided. We propose an anomaly detection method that involves accurate linearization of the non-linear forms arising from sensor-actuator(s) relationships, primarily because solving linear models is easier and well understood. Further, the time complexity of the anomaly detection scenario/problem at hand is lowered using dimensionality reduction of the actuator(s) in relationship with a sensor. We accomplish this by using a well-known water treatment testbed as a use case. Our experiments show millisecond time response to detect anomalies and provide explainability; that are not simultaneously achieved by other state of the art AI/ML models with eXplainable AI (XAI) used for the same purpose. Further, we pin-point the sensor(s) and its actuation state for which anomaly was detected.

View on arXiv
@article{venugopalan2025_2504.20906,
  title={ GiBy: A Giant-Step Baby-Step Classifier For Anomaly Detection In Industrial Control Systems },
  author={ Sarad Venugopalan and Sridhar Adepu },
  journal={arXiv preprint arXiv:2504.20906},
  year={ 2025 }
}
Comments on this paper