31
0

Quaternion Nuclear Norms Over Frobenius Norms Minimization for Robust Matrix Completion

Abstract

Recovering hidden structures from incomplete or noisy data remains a pervasive challenge across many fields, particularly where multi-dimensional data representation is essential. Quaternion matrices, with their ability to naturally model multi-dimensional data, offer a promising framework for this problem. This paper introduces the quaternion nuclear norm over the Frobenius norm (QNOF) as a novel nonconvex approximation for the rank of quaternion matrices. QNOF is parameter-free and scale-invariant. Utilizing quaternion singular value decomposition, we prove that solving the QNOF can be simplified to solving the singular value L1/L2L_1/L_2 problem. Additionally, we extend the QNOF to robust quaternion matrix completion, employing the alternating direction multiplier method to derive solutions that guarantee weak convergence under mild conditions. Extensive numerical experiments validate the proposed model's superiority, consistently outperforming state-of-the-art quaternion methods.

View on arXiv
@article{guo2025_2504.21468,
  title={ Quaternion Nuclear Norms Over Frobenius Norms Minimization for Robust Matrix Completion },
  author={ Yu Guo and Guoqing Chen and Tieyong Zeng and Qiyu Jin and Michael Kwok-Po Ng },
  journal={arXiv preprint arXiv:2504.21468},
  year={ 2025 }
}
Comments on this paper