ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.00321
226
3

Edge Large AI Models: Revolutionizing 6G Networks

IEEE Communications Magazine (IEEE Commun. Mag.), 2025
1 May 2025
Zixin Wang
Yuanming Shi
Yong Zhou
Jingyang Zhu
Khaled B. Letaief
ArXiv (abs)PDFHTML
Main:6 Pages
4 Figures
Bibliography:1 Pages
Abstract

Large artificial intelligence models (LAMs) possess human-like abilities to solve a wide range of real-world problems, exemplifying the potential of experts in various domains and modalities. By leveraging the communication and computation capabilities of geographically dispersed edge devices, edge LAM emerges as an enabling technology to empower the delivery of various real-time intelligent services in 6G. Unlike traditional edge artificial intelligence (AI) that primarily supports a single task using small models, edge LAM is featured by the need of the decomposition and distributed deployment of large models, and the ability to support highly generalized and diverse tasks. However, due to limited communication, computation, and storage resources over wireless networks, the vast number of trainable neurons and the substantial communication overhead pose a formidable hurdle to the practical deployment of edge LAMs. In this paper, we investigate the opportunities and challenges of edge LAMs from the perspectives of model decomposition and resource management. Specifically, we propose collaborative fine-tuning and full-parameter training frameworks, alongside a microservice-assisted inference architecture, to enhance the deployment of edge LAM over wireless networks. Additionally, we investigate the application of edge LAM in air-interface designs, focusing on channel prediction and beamforming. These innovative frameworks and applications offer valuable insights and solutions for advancing 6G technology.

View on arXiv
Comments on this paper