Graph convolutional networks have recently gained prominence in collaborative filtering (CF) for recommendations. However, we identify potential bottlenecks in two foundational components. First, the embedding layer leads to a latent space with limited capacity, overlooking locally observed but potentially valuable preference patterns. Also, the widely-used neighborhood aggregation is limited in its ability to leverage diverse preference patterns in a fine-grained manner. Building on spectral graph theory, we reveal that these limitations stem from graph filtering with a cut-off in the frequency spectrum and a restricted linear form. To address these issues, we introduce ChebyCF, a CF framework based on graph spectral filtering. Instead of a learned embedding, it takes a user's raw interaction history to utilize the full spectrum of signals contained in it. Also, it adopts Chebyshev interpolation to effectively approximate a flexible non-linear graph filter, and further enhances it by using an additional ideal pass filter and degree-based normalization. Through extensive experiments, we verify that ChebyCF overcomes the aforementioned bottlenecks and achieves state-of-the-art performance across multiple benchmarks and reasonably fast inference. Our code is available atthis https URL.
View on arXiv@article{kim2025_2505.00552, title={ Graph Spectral Filtering with Chebyshev Interpolation for Recommendation }, author={ Chanwoo Kim and Jinkyu Sung and Yebonn Han and Joonseok Lee }, journal={arXiv preprint arXiv:2505.00552}, year={ 2025 } }