ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.01481
16
0

VideoHallu: Evaluating and Mitigating Multi-modal Hallucinations for Synthetic Videos

2 May 2025
Zongxia Li
Xiyang Wu
Yubin Qin
Guangyao Shi
Hongyang Du
Dinesh Manocha
Tianyi Zhou
Jordan Boyd-Graber
    MLLM
ArXivPDFHTML
Abstract

Synthetic video generation with foundation models has gained attention for its realism and wide applications. While these models produce high-quality frames, they often fail to respect common sense and physical laws, resulting in abnormal content. Existing metrics like VideoScore emphasize general quality but ignore such violations and lack interpretability. A more insightful approach is using multi-modal large language models (MLLMs) as interpretable evaluators, as seen in FactScore. Yet, MLLMs' ability to detect abnormalities in synthetic videos remains underexplored. To address this, we introduce VideoHallu, a benchmark featuring synthetic videos from models like Veo2, Sora, and Kling, paired with expert-designed QA tasks solvable via human-level reasoning across various categories. We assess several SoTA MLLMs, including GPT-4o, Gemini-2.5-Pro, Qwen-2.5-VL, and newer models like Video-R1 and VideoChat-R1. Despite strong real-world performance on MVBench and MovieChat, these models still hallucinate on basic commonsense and physics tasks in synthetic settings, underscoring the challenge of hallucination. We further fine-tune SoTA MLLMs using Group Relative Policy Optimization (GRPO) on real and synthetic commonsense/physics data. Results show notable accuracy gains, especially with counterexample integration, advancing MLLMs' reasoning capabilities. Our data is available atthis https URL.

View on arXiv
@article{li2025_2505.01481,
  title={ VideoHallu: Evaluating and Mitigating Multi-modal Hallucinations for Synthetic Videos },
  author={ Zongxia Li and Xiyang Wu and Yubin Qin and Guangyao Shi and Hongyang Du and Dinesh Manocha and Tianyi Zhou and Jordan Lee Boyd-Graber },
  journal={arXiv preprint arXiv:2505.01481},
  year={ 2025 }
}
Comments on this paper