A Novel WaveInst-based Network for Tree Trunk Structure Extraction and Pattern Analysis in Forest Inventory

The pattern analysis of tree structure holds significant scientific value for genetic breeding and forestry management. The current trunk and branch extraction technologies are mainly LiDAR-based or UAV-based. The former approaches obtain high-precision 3D data, but its equipment cost is high and the three-dimensional (3D) data processing is complex. The latter approaches efficiently capture canopy information, but they miss the 3-D structure of trees. In order to deal with the branch information extraction from the complex background interference and occlusion, this work proposes a novel WaveInst instance segmentation framework, involving a discrete wavelet transform, to enhance multi-scale edge information for accurately improving tree structure extraction. Experimental results of the proposed model show superior performance on SynthTree43k, CaneTree100, Urban Street and our PoplarDataset. Moreover, we present a new Phenotypic dataset PoplarDataset, which is dedicated to extract tree structure and pattern analysis from artificial forest. The proposed method achieves a mean average precision of 49.6 and 24.3 for the structure extraction of mature and juvenile trees, respectively, surpassing the existing state-of-the-art method by 9.9. Furthermore, by in tegrating the segmentation model within the regression model, we accurately achieve significant tree grown parameters, such as the location of trees, the diameter-at-breast-height of individual trees, and the plant height, from 2D images directly. This study provides a scientific and plenty of data for tree structure analysis in related to the phenotype research, offering a platform for the significant applications in precision forestry, ecological monitoring, and intelligent breeding.
View on arXiv@article{fan2025_2505.01656, title={ A Novel WaveInst-based Network for Tree Trunk Structure Extraction and Pattern Analysis in Forest Inventory }, author={ Chenyang Fan and Xujie Zhu and Taige Luo and Sheng Xu and Zhulin Chen and Hongxin Yang }, journal={arXiv preprint arXiv:2505.01656}, year={ 2025 } }