High-Fidelity Pseudo-label Generation by Large Language Models for Training Robust Radiology Report Classifiers

Automated labeling of chest X-ray reports is essential for enabling downstream tasks such as training image-based diagnostic models, population health studies, and clinical decision support. However, the high variability, complexity, and prevalence of negation and uncertainty in these free-text reports pose significant challenges for traditional Natural Language Processing methods. While large language models (LLMs) demonstrate strong text understanding, their direct application for large-scale, efficient labeling is limited by computational cost and speed. This paper introduces DeBERTa-RAD, a novel two-stage framework that combines the power of state-of-the-art LLM pseudo-labeling with efficient DeBERTa-based knowledge distillation for accurate and fast chest X-ray report labeling. We leverage an advanced LLM to generate high-quality pseudo-labels, including certainty statuses, for a large corpus of reports. Subsequently, a DeBERTa-Base model is trained on this pseudo-labeled data using a tailored knowledge distillation strategy. Evaluated on the expert-annotated MIMIC-500 benchmark, DeBERTa-RAD achieves a state-of-the-art Macro F1 score of 0.9120, significantly outperforming established rule-based systems, fine-tuned transformer models, and direct LLM inference, while maintaining a practical inference speed suitable for high-throughput applications. Our analysis shows particular strength in handling uncertain findings. This work demonstrates a promising path to overcome data annotation bottlenecks and achieve high-performance medical text processing through the strategic combination of LLM capabilities and efficient student models trained via distillation.
View on arXiv@article{wong2025_2505.01693, title={ High-Fidelity Pseudo-label Generation by Large Language Models for Training Robust Radiology Report Classifiers }, author={ Brian Wong and Kaito Tanaka }, journal={arXiv preprint arXiv:2505.01693}, year={ 2025 } }