ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.01931
23
0

Semantic Intelligence: Integrating GPT-4 with A Planning in Low-Cost Robotics

3 May 2025
Jesse Barkley
A. George
A. Farimani
ArXivPDFHTML
Abstract

Classical robot navigation often relies on hardcoded state machines and purely geometric path planners, limiting a robot's ability to interpret high-level semantic instructions. In this paper, we first assess GPT-4's ability to act as a path planner compared to the A* algorithm, then present a hybrid planning framework that integrates GPT-4's semantic reasoning with A* on a low-cost robot platform operating on ROS2 Humble. Our approach eliminates explicit finite state machine (FSM) coding by using prompt-based GPT-4 reasoning to handle task logic while maintaining the accurate paths computed by A*. The GPT-4 module provides semantic understanding of instructions and environmental cues (e.g., recognizing toxic obstacles or crowded areas to avoid, or understanding low-battery situations requiring alternate route selection), and dynamically adjusts the robot's occupancy grid via obstacle buffering to enforce semantic constraints. We demonstrate multi-step reasoning for sequential tasks, such as first navigating to a resource goal and then reaching a final destination safely. Experiments on a Petoi Bittle robot with an overhead camera and Raspberry Pi Zero 2W compare classical A* against GPT-4-assisted planning. Results show that while A* is faster and more accurate for basic route generation and obstacle avoidance, the GPT-4-integrated system achieves high success rates (96-100%) on semantic tasks that are infeasible for pure geometric planners. This work highlights how affordable robots can exhibit intelligent, context-aware behaviors by leveraging large language model reasoning with minimal hardware and no fine-tuning.

View on arXiv
@article{barkley2025_2505.01931,
  title={ Semantic Intelligence: Integrating GPT-4 with A Planning in Low-Cost Robotics },
  author={ Jesse Barkley and Abraham George and Amir Barati Farimani },
  journal={arXiv preprint arXiv:2505.01931},
  year={ 2025 }
}
Comments on this paper