ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.02161
17
0

Focus What Matters: Matchability-Based Reweighting for Local Feature Matching

4 May 2025
Dongyue Li
ArXivPDFHTML
Abstract

Since the rise of Transformers, many semi-dense matching methods have adopted attention mechanisms to extract feature descriptors. However, the attention weights, which capture dependencies between pixels or keypoints, are often learned from scratch. This approach can introduce redundancy and noisy interactions from irrelevant regions, as it treats all pixels or keypoints equally. Drawing inspiration from keypoint selection processes, we propose to first classify all pixels into two categories: matchable and non-matchable. Matchable pixels are expected to receive higher attention weights, while non-matchable ones are down-weighted. In this work, we propose a novel attention reweighting mechanism that simultaneously incorporates a learnable bias term into the attention logits and applies a matchability-informed rescaling to the input value features. The bias term, injected prior to the softmax operation, selectively adjusts attention scores based on the confidence of query-key interactions. Concurrently, the feature rescaling acts post-attention by modulating the influence of each value vector in the final output. This dual design allows the attention mechanism to dynamically adjust both its internal weighting scheme and the magnitude of its output representations. Extensive experiments conducted on three benchmark datasets validate the effectiveness of our method, consistently outperforming existing state-of-the-art approaches.

View on arXiv
@article{li2025_2505.02161,
  title={ Focus What Matters: Matchability-Based Reweighting for Local Feature Matching },
  author={ Dongyue Li },
  journal={arXiv preprint arXiv:2505.02161},
  year={ 2025 }
}
Comments on this paper