SetONet: A Set-Based Operator Network for Solving PDEs with Variable-Input Sampling
Neural operators, particularly the Deep Operator Network (DeepONet), have shown promise in learning mappings between function spaces for solving differential equations. However, standard DeepONet requires input functions to be sampled at fixed locations, limiting its applicability when sensor configurations vary or inputs exist on irregular grids. We introduce the Set Operator Network (SetONet), which modifies DeepONet's branch network to process input functions as unordered sets of location-value pairs. By incorporating Deep Sets principles, SetONet ensures permutation invariance while maintaining the same parameter count as the baseline. On classical operator-learning benchmarks, SetONet achieves parity with DeepONet on fixed layouts while sustaining accuracy under variable sensor configurations or sensor drop-off - conditions for which standard DeepONet is not applicable. More significantly, SetONet natively handles problems where inputs are naturally represented as unstructured point clouds (such as point sources or density samples) rather than values on fixed grids, a capability standard DeepONet lacks. On heat conduction with point sources, advection-diffusion modeling chemical plumes, and optimal transport between density samples, SetONet learns operators end-to-end without rasterization or multi-stage pipelines. These problems feature inputs that are naturally discrete point sets (point sources or density samples) rather than functions on fixed grids. SetONet is a DeepONet-class architecture that addresses such problems with a lightweight design, significantly broadening the applicability of operator learning to problems with variable, incomplete, or unstructured input data.
View on arXiv