ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.04861
50
0

Mix-QSAM: Mixed-Precision Quantization of the Segment Anything Model

8 May 2025
Navin Ranjan
Andreas E. Savakis
    MQ
    VLM
ArXivPDFHTML
Abstract

The Segment Anything Model (SAM) is a popular vision foundation model; however, its high computational and memory demands make deployment on resource-constrained devices challenging. While Post-Training Quantization (PTQ) is a practical approach for reducing computational overhead, existing PTQ methods rely on fixed bit-width quantization, leading to suboptimal accuracy and efficiency. To address this limitation, we propose Mix-QSAM, a mixed-precision PTQ framework for SAM. First, we introduce a layer-wise importance score, derived using Kullback-Leibler (KL) divergence, to quantify each layer's contribution to the model's output. Second, we introduce cross-layer synergy, a novel metric based on causal mutual information, to capture dependencies between adjacent layers. This ensures that highly interdependent layers maintain similar bit-widths, preventing abrupt precision mismatches that degrade feature propagation and numerical stability. Using these metrics, we formulate an Integer Quadratic Programming (IQP) problem to determine optimal bit-width allocation under model size and bit-operation constraints, assigning higher precision to critical layers while minimizing bit-width in less influential layers. Experimental results demonstrate that Mix-QSAM consistently outperforms existing PTQ methods on instance segmentation and object detection tasks, achieving up to 20% higher average precision under 6-bit and 4-bit mixed-precision settings, while maintaining computational efficiency.

View on arXiv
@article{ranjan2025_2505.04861,
  title={ Mix-QSAM: Mixed-Precision Quantization of the Segment Anything Model },
  author={ Navin Ranjan and Andreas Savakis },
  journal={arXiv preprint arXiv:2505.04861},
  year={ 2025 }
}
Comments on this paper