CPP-DIP: Multi-objective Coverage Path Planning for MAVs in Dispersed and Irregular Plantations

Coverage Path Planning (CPP) is vital in precision agriculture to improve efficiency and resource utilization. In irregular and dispersed plantations, traditional grid-based CPP often causes redundant coverage over non-vegetated areas, leading to waste and pollution. To overcome these limitations, we propose CPP-DIP, a multi-objective CPP framework designed for Micro Air Vehicles (MAVs). The framework transforms the CPP task into a Traveling Salesman Problem (TSP) and optimizes flight paths by minimizing travel distance, turning angles, and intersection counts. Unlike conventional approaches, our method does not rely on GPS-based environmental modeling. Instead, it uses aerial imagery and a Histogram of Oriented Gradients (HOG)-based approach to detect trees and extract image coordinates. A density-aware waypoint strategy is applied: Kernel Density Estimation (KDE) is used to reduce redundant waypoints in dense regions, while a greedy algorithm ensures complete coverage in sparse areas. To verify the generality of the framework, we solve the resulting TSP using three different methods: Greedy Heuristic Insertion (GHI), Ant Colony Optimization (ACO), and Monte Carlo Reinforcement Learning (MCRL). Then an object-based optimization is applied to further refine the resulting path. Additionally, CPP-DIP integrates ForaNav, our insect-inspired navigation method, for accurate tree localization and tracking. The experimental results show that MCRL offers a balanced solution, reducing the travel distance by 16.9 % compared to ACO while maintaining a similar performance to GHI. It also improves path smoothness by reducing turning angles by 28.3 % and 59.9 % relative to ACO and GHI, respectively, and effectively eliminates intersections. These results confirm the robustness and effectiveness of CPP-DIP in different TSP solvers.
View on arXiv@article{kuang2025_2505.04989, title={ CPP-DIP: Multi-objective Coverage Path Planning for MAVs in Dispersed and Irregular Plantations }, author={ Weijie Kuang and Hann Woei Ho and Ye Zhou }, journal={arXiv preprint arXiv:2505.04989}, year={ 2025 } }