34
0

FG-CLIP: Fine-Grained Visual and Textual Alignment

Abstract

Contrastive Language-Image Pre-training (CLIP) excels in multimodal tasks such as image-text retrieval and zero-shot classification but struggles with fine-grained understanding due to its focus on coarse-grained short captions. To address this, we propose Fine-Grained CLIP (FG-CLIP), which enhances fine-grained understanding through three key innovations. First, we leverage large multimodal models to generate 1.6 billion long caption-image pairs for capturing global-level semantic details. Second, a high-quality dataset is constructed with 12 million images and 40 million region-specific bounding boxes aligned with detailed captions to ensure precise, context-rich representations. Third, 10 million hard fine-grained negative samples are incorporated to improve the model's ability to distinguish subtle semantic differences. We construct a comprehensive dataset, termed FgGRN, by integrating high-quality region-specific annotations with challenging fine-grained negative samples. Corresponding training methods are meticulously designed for these data. Extensive experiments demonstrate that FG-CLIP outperforms the original CLIP and other state-of-the-art methods across various downstream tasks, including fine-grained understanding, open-vocabulary object detection, image-text retrieval, and general multimodal benchmarks. These results highlight FG-CLIP's effectiveness in capturing fine-grained image details and improving overall model performance. The related data, code, and models are available atthis https URL.

View on arXiv
@article{xie2025_2505.05071,
  title={ FG-CLIP: Fine-Grained Visual and Textual Alignment },
  author={ Chunyu Xie and Bin Wang and Fanjing Kong and Jincheng Li and Dawei Liang and Gengshen Zhang and Dawei Leng and Yuhui Yin },
  journal={arXiv preprint arXiv:2505.05071},
  year={ 2025 }
}
Comments on this paper