Robust Online Learning with Private Information

This paper investigates the robustness of online learning algorithms when learners possess private information. No-external-regret algorithms, prevalent in machine learning, are vulnerable to strategic manipulation, allowing an adaptive opponent to extract full surplus. Even standard no-weak-external-regret algorithms, designed for optimal learning in stationary environments, exhibit similar vulnerabilities. This raises a fundamental question: can a learner simultaneously prevent full surplus extraction by adaptive opponents while maintaining optimal performance in well-behaved environments? To address this, we model the problem as a two-player repeated game, where the learner with private information plays against the environment, facing ambiguity about the environment's types: stationary or adaptive. We introduce \emph{partial safety} as a key design criterion for online learning algorithms to prevent full surplus extraction. We then propose the \emph{Explore-Exploit-Punish} (\textsf{EEP}) algorithm and prove that it satisfies partial safety while achieving optimal learning in stationary environments, and has a variant that delivers improved welfare performance. Our findings highlight the risks of applying standard online learning algorithms in strategic settings with adverse selection. We advocate for a shift toward online learning algorithms that explicitly incorporate safeguards against strategic manipulation while ensuring strong learning performance.
View on arXiv@article{okumura2025_2505.05341, title={ Robust Online Learning with Private Information }, author={ Kyohei Okumura }, journal={arXiv preprint arXiv:2505.05341}, year={ 2025 } }