19
0

SpectrumFM: A Foundation Model for Intelligent Spectrum Management

Abstract

Intelligent spectrum management is crucial for improving spectrum efficiency and achieving secure utilization of spectrum resources. However, existing intelligent spectrum management methods, typically based on small-scale models, suffer from notable limitations in recognition accuracy, convergence speed, and generalization, particularly in the complex and dynamic spectrum environments. To address these challenges, this paper proposes a novel spectrum foundation model, termed SpectrumFM, establishing a new paradigm for spectrum management. SpectrumFM features an innovative encoder architecture that synergistically exploits the convolutional neural networks and the multi-head self-attention mechanisms to enhance feature extraction and enable robust representation learning. The model is pre-trained via two novel self-supervised learning tasks, namely masked reconstruction and next-slot signal prediction, which leverage large-scale in-phase and quadrature (IQ) data to achieve comprehensive and transferable spectrum representations. Furthermore, a parameter-efficient fine-tuning strategy is proposed to enable SpectrumFM to adapt to various downstream spectrum management tasks, including automatic modulation classification (AMC), wireless technology classification (WTC), spectrum sensing (SS), and anomaly detection (AD). Extensive experiments demonstrate that SpectrumFM achieves superior performance in terms of accuracy, robustness, adaptability, few-shot learning efficiency, and convergence speed, consistently outperforming conventional methods across multiple benchmarks. Specifically, SpectrumFM improves AMC accuracy by up to 12.1% and WTC accuracy by 9.3%, achieves an area under the curve (AUC) of 0.97 in SS at -4 dB signal-to-noise ratio (SNR), and enhances AD performance by over 10%.

View on arXiv
@article{zhou2025_2505.06256,
  title={ SpectrumFM: A Foundation Model for Intelligent Spectrum Management },
  author={ Fuhui Zhou and Chunyu Liu and Hao Zhang and Wei Wu and Qihui Wu and Derrick Wing Kwan Ng and Tony Q. S. Quek and Chan-Byoung Chae },
  journal={arXiv preprint arXiv:2505.06256},
  year={ 2025 }
}
Comments on this paper