16
0

Visual Instruction Tuning with Chain of Region-of-Interest

Abstract

High-resolution (HR) images are pivotal for enhancing the recognition and understanding capabilities of multimodal large language models (MLLMs). However, directly increasing image resolution can significantly escalate computational demands. In this study, we propose a method called Chain of Region-of-Interest (CoRoI) for Visual Instruction Tuning, aimed at alleviating the computational burden associated with high-resolution images for MLLMs. Drawing inspiration from the selective nature of the human visual system, we recognize that not all regions within high-resolution images carry equal importance. CoRoI seeks to identify and prioritize the most informative regions, thereby enhancing multimodal visual comprehension and recognition while circumventing the need for processing lengthy HR image tokens. Through extensive experiments on 11 benchmarks, we validate the efficacy of CoRoI across varying sizes, ranging from 7B to 34B in parameters. Our models consistently demonstrate superior performance across diverse multimodal benchmarks and tasks. Notably, our method outperforms LLaVA-NeXT on almost all benchmarks and our finetuned 34B model surpasses proprietary methods like Gemini Pro 1.0 on six benchmarks, as well as outperforming GPT-4V on MMB, SEED-I, and MME.

View on arXiv
@article{chen2025_2505.06840,
  title={ Visual Instruction Tuning with Chain of Region-of-Interest },
  author={ Yixin Chen and Shuai Zhang and Boran Han and Bernie Wang },
  journal={arXiv preprint arXiv:2505.06840},
  year={ 2025 }
}
Comments on this paper