RealRep: Generalized SDR-to-HDR Conversion with Style Disentangled Representation Learning

High-Dynamic-Range Wide-Color-Gamut (HDR-WCG) technology is becoming increasingly prevalent, intensifying the demand for converting Standard Dynamic Range (SDR) content to HDR. Existing methods primarily rely on fixed tone mapping operators, which are inadequate for handling SDR inputs with diverse styles commonly found in real-world scenarios. To address this challenge, we propose a generalized SDR-to-HDR method that handles diverse styles in real-world SDR content, termed Realistic Style Disentangled Representation Learning (RealRep). By disentangling luminance and chrominance, we analyze the intrinsic differences between contents with varying styles and propose a disentangled multi-view style representation learning method. This approach captures the guidance prior of true luminance and chrominance distributions across different styles, even when the SDR style distributions exhibit significant variations, thereby establishing a robust embedding space for inverse tone mapping. Motivated by the difficulty of directly utilizing degradation representation priors, we further introduce the Degradation-Domain Aware Controlled Mapping Network (DDACMNet), a two-stage framework that performs adaptive hierarchical mapping guided by a control-aware normalization mechanism. DDACMNet dynamically modulates the mapping process via degradation-conditioned hierarchical features, enabling robust adaptation across diverse degradation domains. Extensive experiments show that RealRep consistently outperforms state-of-the-art methods with superior generalization and perceptually faithful HDR color gamut reconstruction.
View on arXiv@article{he2025_2505.07322, title={ RealRep: Generalized SDR-to-HDR Conversion with Style Disentangled Representation Learning }, author={ Gang He and Siqi Wang and Kepeng Xu and Lin Zhang }, journal={arXiv preprint arXiv:2505.07322}, year={ 2025 } }