Data heterogeneity across multiple sources is common in real-world machine learning (ML) settings. Although many methods focus on enabling a single model to handle diverse data, real-world markets often comprise multiple competing ML providers. In this paper, we propose a game-theoretic framework -- the Heterogeneous Data Game -- to analyze how such providers compete across heterogeneous data sources. We investigate the resulting pure Nash equilibria (PNE), showing that they can be non-existent, homogeneous (all providers converge on the same model), or heterogeneous (providers specialize in distinct data sources). Our analysis spans monopolistic, duopolistic, and more general markets, illustrating how factors such as the "temperature" of data-source choice models and the dominance of certain data sources shape equilibrium outcomes. We offer theoretical insights into both homogeneous and heterogeneous PNEs, guiding regulatory policies and practical strategies for competitive ML marketplaces.
View on arXiv@article{xu2025_2505.07688, title={ Heterogeneous Data Game: Characterizing the Model Competition Across Multiple Data Sources }, author={ Renzhe Xu and Kang Wang and Bo Li }, journal={arXiv preprint arXiv:2505.07688}, year={ 2025 } }