191

Contrastive Normalizing Flows for Uncertainty-Aware Parameter Estimation

Main:8 Pages
10 Figures
Bibliography:2 Pages
3 Tables
Appendix:7 Pages
Abstract

Estimating physical parameters from data is a crucial application of machine learning (ML) in the physical sciences. However, systematic uncertainties, such as detector miscalibration, induce data distribution distortions that can erode statistical precision. In both high-energy physics (HEP) and broader ML contexts, achieving uncertainty-aware parameter estimation under these domain shifts remains an open problem. In this work, we address this challenge of uncertainty-aware parameter estimation for a broad set of tasks critical for HEP. We introduce a novel approach based on Contrastive Normalizing Flows (CNFs), which achieves top performance on the HiggsML Uncertainty Challenge dataset. Building on the insight that a binary classifier can approximate the model parameter likelihood ratio, we address the practical limitations of expressivity and the high cost of simulating high-dimensional parameter grids by embedding data and parameters in a learned CNF mapping. This mapping yields a tunable contrastive distribution that enables robust classification under shifted data distributions. Through a combination of theoretical analysis and empirical evaluations, we demonstrate that CNFs, when coupled with a classifier and established frequentist techniques, provide principled parameter estimation and uncertainty quantification through classification that is robust to data distribution distortions.

View on arXiv
Comments on this paper