Self-Supervised Transformer-based Contrastive Learning for Intrusion Detection Systems

As the digital landscape becomes more interconnected, the frequency and severity of zero-day attacks, have significantly increased, leading to an urgent need for innovative Intrusion Detection Systems (IDS). Machine Learning-based IDS that learn from the network traffic characteristics and can discern attack patterns from benign traffic offer an advanced solution to traditional signature-based IDS. However, they heavily rely on labeled datasets, and their ability to generalize when encountering unseen traffic patterns remains a challenge. This paper proposes a novel self-supervised contrastive learning approach based on transformer encoders, specifically tailored for generalizable intrusion detection on raw packet sequences. Our proposed learning scheme employs a packet-level data augmentation strategy combined with a transformer-based architecture to extract and generate meaningful representations of traffic flows. Unlike traditional methods reliant on handcrafted statistical features (NetFlow), our approach automatically learns comprehensive packet sequence representations, significantly enhancing performance in anomaly identification tasks and supervised learning for intrusion detection. Our transformer-based framework exhibits better performance in comparison to existing NetFlow self-supervised methods. Specifically, we achieve up to a 3% higher AUC in anomaly detection for intra-dataset evaluation and up to 20% higher AUC scores in inter-dataset evaluation. Moreover, our model provides a strong baseline for supervised intrusion detection with limited labeled data, exhibiting an improvement over self-supervised NetFlow models of up to 1.5% AUC when pretrained and evaluated on the same dataset. Additionally, we show the adaptability of our pretrained model when fine-tuned across different datasets, demonstrating strong performance even when lacking benign data from the target domain.
View on arXiv@article{koukoulis2025_2505.08816, title={ Self-Supervised Transformer-based Contrastive Learning for Intrusion Detection Systems }, author={ Ippokratis Koukoulis and Ilias Syrigos and Thanasis Korakis }, journal={arXiv preprint arXiv:2505.08816}, year={ 2025 } }