Focus, Merge, Rank: Improved Question Answering Based on Semi-structured Knowledge Bases

In many real-world settings, machine learning models and interactive systems have access to both structured knowledge, e.g., knowledge graphs or tables, and unstructured content, e.g., natural language documents. However, most rely on either. Semi-Structured Knowledge Bases (SKBs) bridge this gap by linking unstructured content to nodes within structured data, thereby enabling new strategies for knowledge access and use. In this work, we present FocusedRetriever, a modular SKB-based framework for multi-hop question answering. It integrates components (VSS-based entity search, LLM-based generation of Cypher queries and pairwise re-ranking) in a way that enables it to outperform state-of-the-art methods across all three STaRK benchmark test sets, covering diverse domains and multiple performance metrics. The average first-hit rate exceeds that of the second-best method by 25.7%. FocusedRetriever leverages (1) the capacity of Large Language Models (LLMs) to extract relational facts and entity attributes from unstructured text, (2) node set joins to filter answer candidates based on these extracted triplets and constraints, (3) vector similarity search to retrieve and rank relevant unstructured content, and (4) the contextual capabilities of LLMs to finally rank the top-k answers. For generality, we only incorporate base LLMs in FocusedRetriever in our evaluation. However, our analysis of intermediate results highlights several opportunities for further upgrades including finetuning. The source code is publicly available atthis https URL.
View on arXiv@article{boer2025_2505.09246, title={ Focus, Merge, Rank: Improved Question Answering Based on Semi-structured Knowledge Bases }, author={ Derian Boer and Stephen Roth and Stefan Kramer }, journal={arXiv preprint arXiv:2505.09246}, year={ 2025 } }