14
0

Variational Visual Question Answering

Abstract

Despite remarkable progress in multimodal models for Visual Question Answering (VQA), there remain major reliability concerns because the models can often be overconfident and miscalibrated, especially in out-of-distribution (OOD) settings. Plenty has been done to address such issues for unimodal models, but little work exists for multimodal cases. Here, we address unreliability in multimodal models by proposing a Variational VQA approach. Specifically, instead of fine-tuning vision-language models by using AdamW, we employ a recently proposed variational algorithm called IVON, which yields a posterior distribution over model parameters. Through extensive experiments, we show that our approach improves calibration and abstentions without sacrificing the accuracy of AdamW. For instance, compared to AdamW fine-tuning, we reduce Expected Calibration Error by more than 50% compared to the AdamW baseline and raise Coverage by 4% vs. SOTA (for a fixed risk of 1%). In the presence of distribution shifts, the performance gain is even higher, achieving 8% Coverage (@ 1% risk) improvement vs. SOTA when 50% of test cases are OOD. Overall, we present variational learning as a viable option to enhance the reliability of multimodal models.

View on arXiv
@article{wieczorek2025_2505.09591,
  title={ Variational Visual Question Answering },
  author={ Tobias Jan Wieczorek and Nathalie Daun and Mohammad Emtiyaz Khan and Marcus Rohrbach },
  journal={arXiv preprint arXiv:2505.09591},
  year={ 2025 }
}
Comments on this paper