ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.10172
10
0

Does Scaling Law Apply in Time Series Forecasting?

15 May 2025
Zeyan Li
Libing Chen
Yin Tang
    AI4TS
ArXivPDFHTML
Abstract

Rapid expansion of model size has emerged as a key challenge in time series forecasting. From early Transformer with tens of megabytes to recent architectures like TimesNet with thousands of megabytes, performance gains have often come at the cost of exponentially increasing parameter counts. But is this scaling truly necessary? To question the applicability of the scaling law in time series forecasting, we propose Alinear, an ultra-lightweight forecasting model that achieves competitive performance using only k-level parameters. We introduce a horizon-aware adaptive decomposition mechanism that dynamically rebalances component emphasis across different forecast lengths, alongside a progressive frequency attenuation strategy that achieves stable prediction in various forecasting horizons without incurring the computational overhead of attention mechanisms. Extensive experiments on seven benchmark datasets demonstrate that Alinear consistently outperforms large-scale models while using less than 1% of their parameters, maintaining strong accuracy across both short and ultra-long forecasting horizons. Moreover, to more fairly evaluate model efficiency, we propose a new parameter-aware evaluation metric that highlights the superiority of ALinear under constrained model budgets. Our analysis reveals that the relative importance of trend and seasonal components varies depending on data characteristics rather than following a fixed pattern, validating the necessity of our adaptive design. This work challenges the prevailing belief that larger models are inherently better and suggests a paradigm shift toward more efficient time series modeling.

View on arXiv
@article{li2025_2505.10172,
  title={ Does Scaling Law Apply in Time Series Forecasting? },
  author={ Zeyan Li and Libing Chen and Yin Tang },
  journal={arXiv preprint arXiv:2505.10172},
  year={ 2025 }
}
Comments on this paper