Motivated by scaling laws in language modeling that demonstrate how test loss scales as a power law with model and dataset sizes, we find that similar laws exist in preference modeling. We propose World Preference Modeling(WorldPM)toemphasizethisscalingpotential,whereWorldPreferenceembodiesaunifiedrepresentationofhumanpreferences.Inthispaper,wecollectpreferencedatafrompublicforumscoveringdiverseusercommunities,andconductextensivetrainingusing15M−scaledataacrossmodelsrangingfrom1.5Bto72Bparameters.Weobservedistinctpatternsacrossdifferentevaluationmetrics:(1)Adversarialmetrics(abilitytoidentifydeceptivefeatures)consistentlyscaleupwithincreasedtrainingdataandbasemodelsize;(2)Objectivemetrics(objectiveknowledgewithwell−definedanswers)showemergentbehaviorinlargerlanguagemodels,highlightingWorldPM′sscalabilitypotential;(3)Subjectivemetrics(subjectivepreferencesfromalimitednumberofhumansorAI)donotdemonstratescalingtrends.FurtherexperimentsvalidatetheeffectivenessofWorldPMasafoundationforpreferencefine−tuning.Throughevaluationson7benchmarkswith20subtasks,wefindthatWorldPMbroadlyimprovesthegeneralizationperformanceacrosshumanpreferencedatasetsofvaryingsizes(7K,100Kand800Ksamples),withperformancegainsexceeding5
@article{wang2025_2505.10527,
title={ WorldPM: Scaling Human Preference Modeling },
author={ Binghai Wang and Runji Lin and Keming Lu and Le Yu and Zhenru Zhang and Fei Huang and Chujie Zheng and Kai Dang and Yang Fan and Xingzhang Ren and An Yang and Binyuan Hui and Dayiheng Liu and Tao Gui and Qi Zhang and Xuanjing Huang and Yu-Gang Jiang and Bowen Yu and Jingren Zhou and Junyang Lin },
journal={arXiv preprint arXiv:2505.10527},
year={ 2025 }
}