ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2505.13507
241
0

Open Set Domain Adaptation with Vision-language models via Gradient-aware Separation

Applied and Computational Engineering (ACE), 2025
16 May 2025
Haoyang Chen
    VLM
ArXiv (abs)PDFHTML
Main:10 Pages
2 Figures
5 Tables
Abstract

Open-Set Domain Adaptation (OSDA) confronts the dual challenge of aligning known-class distributions across domains while identifying target-domain-specific unknown categories. Current approaches often fail to leverage semantic relationships between modalities and struggle with error accumulation in unknown sample detection. We propose to harness Contrastive Language-Image Pretraining (CLIP) to address these limitations through two key innovations: 1) Prompt-driven cross-domain alignment: Learnable textual prompts conditioned on domain discrepancy metrics dynamically adapt CLIP's text encoder, enabling semantic consistency between source and target domains without explicit unknown-class supervision. 2) Gradient-aware open-set separation: A gradient analysis module quantifies domain shift by comparing the L2-norm of gradients from the learned prompts, where known/unknown samples exhibit statistically distinct gradient behaviors. Evaluations on Office-Home show that our method consistently outperforms CLIP baseline and standard baseline. Ablation studies confirm the gradient norm's critical role.

View on arXiv
Comments on this paper